Short Baseline Neutrino Workshop

Richard Van de Water (LANL) SBNW11, May 12-14, 2011

WorkShop Summary:

- Acknowledgments
- Overall impression of the workshop
- Brief summary and key questions
- Requirements for future beam experiments
- Future experiments/facilities
 - Short term
 - Mid term
 - Long term
- Questions to motivate discussion

Thanks to...

- You, for coming out and making this conference a success!
- FNAL and LANL for supporting the conference.
- The scientific and local organizing committee for a great selection of talks.
- Zarko Pavlovic and Ellen Klein for creating and maintaining the web site.
- And especially Elaine Philips and the FNAL conference staff who helped organize and run everything smoothly!

Overall Impressions...

- Great turnout > 100 participants.
- Lots of interesting and new ideas.
- Drawing connections between different experimental results and theoretical explanations.
- Lively and informative discussions.
- Overall, I think this was a successful conference and achieved the goal of getting the community together and to begin thinking seriously about L/E ~ 1 physics.

Good One Page Summary...

André de Gouvêa ______ North André de Gouvêa ______ Northwester

_____ Interpreting Anc May 13, 2011 ____

Evidence(?) For Physics Beyond the Three-Massive-Neutrinos Paradia

- LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$;
- MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$;
- MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$;
- Reactor Anomaly;
- MINOS ν_{μ} versus $\bar{\nu}_{\mu}$ oscillations;
- Ga Anomaly;
- ? BNL E734

Plus

• Where is the "up-turn" in P_{ee} for low-energy solar neutrinos?

(Some) Phenomenological Explanations

• Sterile Neutrinos (light, stable variety);

LSND, MB, Reactor, Ga, solar

• New Neutrino Interactions;

MINOS, solar

• Lorentz Invariance/CPT-Violation;

"all"

• Sterile Neutrinos (heavy, unstable variety).

LSND, MB

SBNW11: R. Van de Water (LANL)

My broadbrush view:

- There are a smorgasbord of experimental hints that point to possible new physics.
 - "Not a single piece of evidence that directly contradicts LSND/Miniboone".
 - Much circumstantial experimental evidence that supports LSND/MB from MeV to GeV range.
 Karmen and numu disappearance provides some restriction.
- There are a number of interesting theoretical ideas that could explain some or all the experimental results.
- The question now is where do we go from here????

Some key questions/observations:

- Need to make smoking gun measurement.
 - How do we do it quickly?
 - Numu or Numu-bar disappearance??
- Need to make a > 5 sigma measurement at L/E
 ~1 to convince the community.
- Not sure of underlying physics, so need a experiment with diverse capabilities that can test many ideas.
 - Will probably be costly.
 - Or, try many smaller/cheaper/quicker experiments that excel at testing certain models.
- Cross sections effects are important, and can change interpretation of oscillation results.

Requirements for next beamline experiments:

Need to measure neutrino properties to the ~percent level.

Rate = Flux x Cross Section x detector response

Flux: Intense source -> Booster/MI, CERN-PS, SNS, cyclotrons, LBNE, Project X. Measure flux insitu using H/D₂ targets.

Cross Section: Need better models, especially to measure correct neutrino energy. Much data on Carbon, need more data for Ar.

Detector Response: LAr would allow separation of electrons and gamma-rays. Want good tracking and magnetic fields. 2 detectors or long detector to measure L/E effects.

Near Term Goals (~few years) Search for smoking gun:

- Keep running MB to improve antinu statistics (collect ~1.1E21 POT).
- Finnish SB/MB numu-bar disappearance.
- Oscillation updates from Minos (antinu NC, LV).
- Analyze IceCube data, look for numu-bar disappearance.
- Make more cross section measurements with Minerva, Minos, MB, ArgoNeut.
- Develop better cross section models.
 - ->Apply to recent oscillation results, e.g. could it explain the difference in MB nue/antinue appearance result?

Mid Term Possibilities (3-7 years) Make Detailed measurements to begin understanding the underlying physics:

- Run uBooNE to test MB low energy anomaly.
- Build BooNE (near detector) decisive (~5 sigma), quick, inexpensive, on Carbon (measure disappearance/appearance).
- Build OscSNS/cyclotron experiment (stop pion source) to retest LSND directly >5 sigma.
- Minos+ running to search for sterile nu, NSI, etc.
- Build and run 2 LAr detector experiments at CERN and FNAL to make definitive test of appearance, disappearance, nu decay, LV, etc.
- Katrin results.
- NOvA (2nd near detector) and SciNova.
- Develop Muon Storage ring, Reactor (SCRAAM) and Source (LENS,Ga, Borexino) experiments.

Improve the odds...

SuperSearches for SuperSterile Neutrinos with SUPERBooNE

OscSNS at ORNL: A Smoking Gun Measurement of Active-Sterile Neutrino Oscillations

SNS: ~1 GeV, ~1.4 MW

 $v_{\mu} \rightarrow v_{e}$; v_{e} p \rightarrow e⁺ n => re-measure LSND an order of magnitude better.

 $v_{\mu} \rightarrow v_{s}$; Monoenergetic v_{μ} ; $v_{\mu} \leftarrow v_{\mu} \leftarrow v_{\mu$

OscSNS would be capable of making precision measurements of v_e appearance & v_μ disappearance and proving, for example, the existence of sterile neutrinos! (see Phys. Rev. D72, 092001 (2005)). Flux shapes and cross sections are known very well.

SBNW11: R. Van de Water (LANL)

Long Term Possibilities (>8 years) Make Precision measurements of new physics:

- If smoking gun found, then design/build a series of experiments with Project X to explore in detail the source of new physics:
 - DIF (300–600kW at 3GeV, 25–50kW at 8GeV)
 - DAR (difficult)
 - Beam dump (exotics axions, paraphotons, etc)
 - Cross sections
 - Flux measurements with H/D₂ targets
 - Other experiments?

Important point!

- To help achieve the goals outlined in the last three slides, we need to work as a community to get into NSAC, P5, etc, long range plans.
 - ->Important for securing funding opportunities

Questions to motivate discussion:

- 1. Is there enough experimental evidence to pursue further investigation?
- 2. Do we understand enough about neutrino fluxes, cross sections, and backgrounds to be confident in the present oscillation results?
- 3. 3+N sterile neutrinos seem to be preferred, how viable are other physics explanations, e.g. non standard interactions, neutrino decay, axions, LV, etc? How do we test for them?
- 4. What is the best neutrino experiment to pursue when one is not sure of the physics?
- 5. What is better; more powerful flux (project X), precision flux (stop pion source), reactors, sources, or all?
- 6. How many, and what type of experiments are necessary to span the possible physics explanations?
- 7. Do we need this conference on a yearly basis?